ML 스터디 계획

Date:     Updated:

카테고리:

Week1 - Orientation

  • 환경 설정 (Git, Colab)
  • 교재, 일정 조율
  • ML intro


Week2 - Model Training

  • Least Square
  • Pseudo-inverse (SVD)
  • Gradient Descent & Convexity
  • Newton method vs Gradient Descent
  • Regulization - Ridge, Lasso
  • Regression
  • Classification


Week3 - Neural Network

  • NN Simulation
  • Activation Function
  • Vanishing Gradient
  • SGD
  • Back Propagation
  • Optimizer


Week4 - CNN & RNN

  • CNN intro
  • RNN intro


Week5 - Dimension Reduction & Unsupervised Learning

  • PCA (SVD)
  • KNN
  • DBSCAN


Week6 - SVM

  • Lagrange Multiplier
  • Hard Margin SVM
  • Soft Margin SVM
  • Kernel trick


Week7 - Ensemble Learning

  • Decision Tree
  • Ensemble


Week8 - Natural Language Processing

  • RNN review
  • Attention
  • Transformer


Week9 - Auto Encoder

  • AE
  • VAE
  • GAN
  • AAE


맨 위로 이동하기

ML 카테고리 내 다른 글 보러가기

댓글 남기기